6.842 Randomness and Computation April 20, 2022

Lecture 21
Lecturer: Ronitt Rubinfeld Scribe: Jacob Teo

In this lecture, we will cover weak learning of monotone functions.

1 Review

Definition 1 A function f : X — Y is monotone if, given a partial order < on X, for any x,y € X,
<y = f(z) < f(y)

We define a partial order < on the elements of {—1,1}" as follows: For any z,y € {—1,1}", < y if
and only if Viz; < y;. We can imagine this as a graph on vertices {—1, 1}", where we have an edge from
A to B if we can change a single —1 to 1 in A to get B. This is essentially a directed version of the
Boolean hypercube graph.

For every node in the graph, we define its level as the number of bits it has equal to 1. Thus, in level &k

there are (Z) nodes. Note that every edge must go from some level i to ¢ + 1.

Definition 2 A function f : {-1,1}" — {=1,1}, for even n, is a slice function if f(x) = —1 if
level(x) < n/2 and f(x) =1 if level(x) > n/2. The value of f(x) when level(x) = n/2 is arbitrary.

Corollary 3 Every slice function is a monotone function.

How big is the class of slice functions? Notice that all assignments of nodes in level n/2 are valid slice

n 2"
functions, and hence there are 2("/2) ~ 2v= possible slice functions.
Question: Is there a fast learning algorithm specifically for monotone functions?

First let us restrict our class to slice functions, which are all monotone. By Occam’s razor, the number

of samples we need is of the order log 2(u)2) — O(\Q/—%) which is very large.

However, notice that the majority function g(z) = sign(}_;_, x;) is correct on all inputs = where
level(z) # n/2, and hence is guaranteed to be correct for all except = ﬁ of inputs, and is thus a
good approximation with respect to the uniform distribution with essentially zero samples, which gives
a much better bound than Occam’s razor, specifically for the class of slice functions. This demonstrates

how Occam’s razor does not necessarily give us the best bound.

2 Weak Learning for Monotone Functions

We first try to find a weak learning algorithm for monotone functions. Weak learning yields an algorithm
that is only slightly better than random guessing (hence the term “weak”). We present a theorem that
shows that all monotone functions have weak agreement with some dictator or constant function.

Theorem 4 For all monotone functions f, 3g € {£1,21,22,...2n} = S such that Pr,[f(z) = g(x)] >
1 1

5+ Q().

2 n

In other words, for any monotone function f, there exists a function g that is either constant or a dictator
function, such that g approximates f slightly better than random guessing.

This theorem also implies a simple algorithm to find such a function g: simply try all members of S and
output the best one via sampling.

To prove this theorem, we split it into two cases. Suppose that f(z) has weak agreement with g(z) = +1
or —1, then we are done. Otherwise, Pr[f(z) = 1] must be very close to 1/2, and we can bound it
as Pr[f(x) = 1] € [1/4,3/4] (note that this is an extremely loose bound). Before continuing, we first
introduce a new general technique for proving this theorem.

3 Canonical Path Argument

First, we consider how we can view a monotone function f as a coloring on the directed Boolean hy-
percube graph. We color each node red if f(z) =1 and blue if f(z) = —1. Then monotonicity implies
that if we take any path from {—1}" to {1}", there will be some edge on the path where the nodes turn
from blue to red.

The blue-red edges form a “boundary” between blue and red in the colored graph.

Definition 5 The influence of f with respect to the i-th bit is defined by:

red-blue edges in i-th direction
2n71

Inf;(f) = = Pr[f(2) # f(=)]

where (x®% denotes x with the i-th bit flipped.

The overall influence of f is the sum over all i:

Inf(f) = # red- blue edges Zlﬂfz

We now present two theorems, the proofs of which will be in the homework.

Theorem 6 For a monotone function f, Inf;(f) = f({i}).

Theorem 7 For odd n, the majority function f(x) = sign(} ., x;) has the mazimal influence among
all monotone functions.

Now recall that R
f{i}) =2-Pr[f(z) = Xy (2)] -1 =2-Pr[f(z) = 2] - 1

1 Inf;
— Prlf(2) =w] =5+ “T(f)
and hence to prove our theorem, it suffices to find an i such that Inf;(f) > Q(3).

To show that this ¢ exists, we use a technique called the Canonical Path Argument. The structure

of the proof will be as follows:

1. For every red-blue pair of nodes, we define a canonical path (a deterministic, unique path). Note
that this path must cross at least one red-blue edge.

2. Next we upper bound the number of canonical paths passing through a given red-blue edge e.

3. Then knowing the total number of canonical paths, we have a lower bound on the total number of
red-blue edges.

3.1 Defining the canonical path

Definition 8 For every pair of nodes x,y where x is red and y is blue, we define the canonical path
from x to y as follows: We scan the bits from left to right (i = 1 to n) then flip the bit if needed (if
x; # yi). Each flip corresponds to traversing a single edge and is a step in the path.

3.2 Counting canonical paths

Each red-blue pair has a corresponding canonical path. Recall that we have Pr[f(z) = 1] € [}, 2], and

hence at least 1 of the 2" nodes are red and § are blue. Thus

1 1

Number of paths (>
umber of paths (> 1 T

e

3.3 Bounding paths through any edge

Each edge corresponds to flipping some bit i. Let us denote the edge as (u,u®'). Then we want to
count z,y such that the canonical path of x — y will pass through u — u®’. To achieve this, must
agree with u on bits 7,4 4+ 2,...n and y must agree with u®’ on bits 1,2, ...i. Thus we have 2~ ways to
choose 1,2, ...x;—1 and 2" "% ways to choose Yit1, Yit2,---Yn. Hence the total number of z,y pairs is
21 . gn—i < on,

3.4 Final bound

Recall that every canonical path must pass through at least one red-blue edge. Hence
Number of red-blue edges x Max number of canonical paths passing through an edge
> Number of red-blue canonical paths
1 .92n 1
= Number of red-blue edges > 167 =—.2"

Every edge is in one of n directions, and hence

1 1
37 such that there are > 6 2" . — red-blue edges in direction %

Since we know each direction i has 2"~! edges,

1l . gn 1 1 R
. 16 n o o_ _) — —
= i such that Inf;(f) > IS T e f{i}) =2 -Pr[f(x) =a4] -1
= 3i such that Pr[f(z) ==z;] > 1—&- L
T2 16n

and this ¢ completes the proof of our theorem.

4 Weak Learning

We now discuss weak learning as a general concept.

Definition 9 An algorithm A weakly PAC learns concept class C if Ve € C and over all distributions
D, there exists v > 0 such that ¥§ > 0 with probability > 1 — § given examples of ¢, A outputs h such
that Prp[h(z) = c(z)] > 3 + 1.

Notice that the final term is changed from 1 — € in strong learning to % + 7 in weak learning.

It was first conjectured that weak learning is easier that weak learning, which meant that there exists
functions that we can weakly learn but not strongly learn. The next theorem disproves that, through a
technique called “boosting”.

Theorem 10 If C can be weakly learned on any distribution D, then C can be strongly learned.

We will continue discussing this in the next lecture.

